Users Online: 99
Home About us Editorial board Search Ahead of print Current issue Archives Submit article Instructions Subscribe Contacts Login 
DIAGNOSTICS IN ONCOLOGY: ORIGINAL ARTICLE
Year : 2017  |  Volume : 6  |  Issue : 1  |  Page : 31-34

Comparative evaluation of iodine-131 metaiodobenzylguanidine and 18-fluorodeoxyglucose positron emission tomography in assessing neural crest tumors: Will they play a complementary role?


Radiation Medicine Centre, Bhabha Atomic Research Centre, Tata Memorial Centre, Mumbai, Maharashtra, India

Correspondence Address:
Sandip Basu
Radiation Medicine Centre, Bhabha Atomic Research Centre, Tata Memorial Centre, Mumbai, Maharashtra
India
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/2278-330X.202556

Rights and Permissions

Background: 18-Fluorodeoxyglucose positron emission tomography (FDG-PET) has established a role in the evaluation of several malignancies. However, its precise clinical role in the neural crest cell tumors continues to evolve. Purpose: The purpose of this study was to compare iodine-131 metaiodobenzylguanidine (131I-MIBG) and FDG-PET of head to head in patients with neural crest tumors both qualitatively and semiquantitatively and to determine their clinical utility in disease status evaluation and further management. Materials and Methods: A total of 32 patients who had undergone 131I-MIBG and FDG-PET prospectively were evaluated and clinicopathologically grouped into three categories: neuroblastoma, pheochromocytoma, and medullary carcinoma thyroid. Results: In 18 patients of neuroblastoma, FDG PET and 131I-MIBG showed patient-specific sensitivity of 84% and 72%, respectively. The mean maximum standardized uptake value (SUVmax) of primary lesions in patients with unfavorable histology was found to be relatively higher than those with favorable histology (5.18 ± 2.38 vs. 3.21 ± 1.69). The mean SUVmaxof two common sites (posterior superior iliac spine [PSIS] and greater trochanter) was higher in patients with involved marrow than those with uninvolved one (2.36 and 2.75 vs. 1.26 and 1.34, respectively). The ratio of SUVmaxof the involved/contralateral normal sites was 2.16 ± 1.9. In equivocal bone marrow results, the uptake pattern with SUV estimation can depict metastatic involvement and help in redirecting the biopsy site. Among seven patients of pheochromocytoma, FDG-PET revealed 100% patient-specific sensitivity. FDG-PET detected more metastatic foci than 131I-MIBG (18 vs. 13 sites). In seven patients of medullary carcinoma thyroid, FDG-PET localized residual, recurrent, or metastatic disease with much higher sensitivity (32 metastatic foci with 72% patient specific sensitivity) than 131I-MIBG, trending along the higher serum calcitonin levels. Conclusions: FDG-PET is not only a good complementary modality in the management of neural crest cell tumors but also it can even be superior, especially in cases of 131I-MIBG nonavid tumors.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed38    
    Printed0    
    Emailed0    
    PDF Downloaded27    
    Comments [Add]    

Recommend this journal