Users Online: 239
Home About us Editorial board Search Ahead of print Current issue Archives Submit article Instructions Subscribe Contacts Login 

 Table of Contents  
POSITION PAPER
Year : 2012  |  Volume : 1  |  Issue : 1  |  Page : 27-29

Skin markings methods and guidelines: A reality in image guidance radiotherapy era


Department of Radiation Oncology, Tata Memorial Centre, Mumbai, India

Date of Web Publication24-May-2012

Correspondence Address:
Jaiprakash Agarwal
Department of Radiation Oncology, Tata Memorial Centre, Mumbai
India
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/2278-330X.96502

Rights and Permissions
  Abstract 

Preparation of site of radiation delivery is an important process in radiation treatment planning and plays a crucial role during a course of radiotherapy to achieve reproducibility of set-up and accuracy of treatment delivery. The preparation of treatment area is done by markings of field center, field edge or other reference point of planned field. Both non-invasive (marker pen, henna) and invasive methods (tattoo) are available for marking with limitations of each. Tattoo with a needle pricked at angle of 30° to 1-2 mm depth to create tattoo 2-3 mm diameter in size is an ideal procedure. Visibility, permanent nature, social-religious belief, and mobility of skin are one of the main concerns about tattoo. Tattoo removal can be done performed if desirable by patients by various modern ways, which will be esthetically available. Dermabrasion, cryotherapy, surgery, QSRL (Q-switched ruby laser) are common methods of tattoo removal. Esthetic dissatisfaction, allergy, dermatoses, keloids, infection, fanning/fading of tattoo are associated problems. In IMRT and IGRT treatment, delivery dependence on tattoo in reduced and use of surrogate markers including particularly for bony set-up and implanted markers (e.g. gold seeds) for tumor localization and treatment verification is increasing. However, these are complex procedures and require an expertise. Ease of set-up and less time required for tattooing are one of the main advantages of tattoo as compared to external or internal marker set-up. Tattoo still remains a crucial method of positioning, especially in developing countries and in palliative treatment settings.

Keywords: Radiation oncology, skin marking methods, tattoo


How to cite this article:
Rathod S, Munshi A, Agarwal J. Skin markings methods and guidelines: A reality in image guidance radiotherapy era. South Asian J Cancer 2012;1:27-9

How to cite this URL:
Rathod S, Munshi A, Agarwal J. Skin markings methods and guidelines: A reality in image guidance radiotherapy era. South Asian J Cancer [serial online] 2012 [cited 2017 Aug 23];1:27-9. Available from: http://journal.sajc.org/text.asp?2012/1/1/27/96502


  Introduction Top


In the modern era of image-guided radiotherapy, preliminary marking of site of radiation delivery is an important step in radiation treatment planning, [1] and these plays a crucial role during a course of radiotherapy to achieve reproducibility of treatment set-up and accuracy of treatment delivery. [2] Skin markings are done either on isocenter or at margins of planned field. Skin marking protocols varies with an institution. [3] An accurate and reliable marking is only gateway for desired radiation delivery.

In IMRT and IGRT treatment, delivery dependence on tattoo in reduced and use of surrogate markers including particularly for bony set-up and implanted markers (e.g. gold seeds) for tumor localization and treatment verification is increasing. [4] However, these are complex procedures and require an expertise. However, tattoo is easy procedure requires less time and still an important skin marking method.

Method

Marker pen, henna, and tattoo are 3 commonly used methods for the skin markings. [5] Marker pens and henna are non-invasive techniques [6],[7],[8] , whereas 3 rd is an invasive technique that involves using needles or commercially available tattooing needles with non-toxic ink. [9] Comparison of marking methods is shown in [Table 1].
Table 1: Comparison of skin marking methods

Click here to view


Tattoo

Worldwide permanent tattooing is the most popular method for skin markings. [10] In this method, a non-toxic ink is injected in the epidermis of the skin using a disposable needle to make a 1-2 mm permanent tattoo. Tattoo provides a permanent reference mark on the skin. If tattoos are used, the point being marked needs to be considered (e.g. field center, field edge or other reference point). As cosmesis is a major end point, the use of multiple tattoos is not desirable. Potential hazards are needle prick injury and tattoo allergy although the latter is very rare. [3]

Mechanism

Superficial pricking deposits pigments into epidermis and superficial dermal layers, especially papillary and reticular dermis. This causes superficial dermal capillary damage and blood droplet covers skin. Pierced skin reacts by getting red and inflamed (erythematosus) followed by swollen (edematous). This reaction subsides within few hours.

Over the next few days, superficial and regenerative basal layer of epidermis will peel off until only pigment in dermis remains. Superficial layer will regenerate and pigment will be seen in dermis through overlying epidermis.

Complete regeneration of epidermis will be complete within 2 weeks, but body will react to pigment as foreign body. Dermal macrophage will engulf pigment particle and will carry them into dermal lymphatic. Some macrophage will travel only short, and this will cause blurring and spreading of tattoo. [11]

Material

Ink used can be visible under normal or ultra-violet light. India ink is most commonly used for visible tattoo worldwide. Recently, sterile pigment inks are available commercially. [12]

Ideal methodology

Single drop of ink should be applied over the site. A 21 gauge needle should be pricked at angle of 30° to 1-2 mm but not deeper. [11] Ideal tattoo is 2-3 mm diameter in size.

Drawbacks of tattoo

  1. India ink tattoo are not visible on all skin type (e.g. Dark-colored or heavily freckled skin); Hair follicles, moles, and tattoos may be similar in appearance, leading to possible set-up error
  2. Permanent and visible nature of tattoo can be detrimental to patient and constant reminder of cancer
  3. Some religious beliefs oppose any kind of skin tattoo
  4. Social stereotype
  5. Mobility of tattoo in elderly and obese patients, the skin tends to be looser; accuracy is lost because the external tattoo set-up points are not necessarily consistent with internal structures


Tattoo removal

Various tattoo removal strategies are being explored since 1960. [12]

  1. Dermabrasion: Epidermis overlying tattoo is sanded black, and chemicals like tannic acid and silver nitrate are applied to pigment-containing region to enhance fading of tattoo. This technique leaves behind significant scar and is not very popular.
  2. Cryotherapy: Liquid nitrogen, applied to pigmented skin, causes necrosis of skin and eventually falls away. However, it is more useful for smaller tattoo.
  3. Surgery: Complete surgical excision is available modality but is associated with scarring.
  4. QSRL (Q switched ruby laser): This emits nano-second domain pulses of light, which are absorbed by tattoo pigment, especially blue-black pigment as India ink. This results in heating of pigments granule containing cells and destroys them. Post-destruction inflammatory process clears the tattoo. Due to extremely short pulses (40-nanosecond), this doesn't affect deeper normal tissue.


Drawback of tattoo removal

These tattoo acts as history of previous treatment and mark the site. This, in turn, prevents an overlap of radiation fields and avoids over-irradiation. Though care may be taken by taking clinical photograph or by maintaining medical records, change in anatomy by weight gain or loss can blur boundaries. Permanent tattoo is valuable in this scenario.

Complications of tattoo are summarized in [Table 2]. [13],[14]
Table 2: Complications of tattoo

Click here to view


Relevance of tattoo in IMRT/IGRT

For image-guided treatments, patients are often aligned to external markers, either placed on the head cast or positioned at patient tattoo position. External marker positions are usually defined at CT simulation time, whereby external fiducial markers are placed with reference to isocenter. Unfortunately, there is internal organ mobility; therefore, external markers can at best only guide the initial treatment set-up. While some structures such as the pelvic lymph nodes may follow the bony anatomy quite nicely, other organs such as the prostate undergo significant motion with respect to the bony anatomy.

Ease of set-up and less time required for tattooing are one of the main advantages of tattoo as compared to an external or internal marker set-up. Tattoo still remains a crucial method of positioning, especially in developing countries and in palliative treatment settings.


  Conclusion Top


Permanent tattoo with India ink remains most-widely used and cost-effective way of skin marking in radiotherapy. Optimal tattoo is the one performed on relatively stable skin, preferably not on visible body parts to avoid cosmetic issue, away from moles/hairy region, done with 21 gauge needle at 30° angulations, measuring 2-3 mm diameter in size. In patients with sense of cosmetic issue, tattoo removal can be addressed. Tattoo still remains an important method of skin marking, especially in palliative settings.

 
  References Top

1.Wurstbauer K, Sedlmayer F, Kogelnik HD. Skin markings in external radiotherapy by temporary tattooing with henna: Improvement of accuracy and increased patient comfort. Int J Radiat Oncol Biol Phys 2001;50:179-81.  Back to cited text no. 1
[PUBMED]  [FULLTEXT]  
2.Greer PB, Mortensen TM. Anterior-posterior treatment localization in pelvic radiotherapy: Tattoos or fixed couch-to-isocenter distance. Med Dosim 1997;22:43-6.  Back to cited text no. 2
[PUBMED]    
3.Pisani L, Lockman D, Jaffray D, Yan D, Martinez A, Wong J. Setup error in radiotherapy: On-line correction using electronic kilovoltage and megavoltage radiographs. Int J Radiat Oncol Biol Phys 2000;47:825-39.  Back to cited text no. 3
[PUBMED]  [FULLTEXT]  
4.Available from: http://www.medicalphysics.org/apps/medicalphysics/MetcalfeCh12.pdf. [Last accessed on 2012 Jan 4].  Back to cited text no. 4
    
5.Probst H, Dodwell D, Gray JC, Holmes M. An evaluation of the accuracy of semi-permanent skin marks for breast cancer irradiation. Radiography 2006;12:186-8.  Back to cited text no. 5
    
6.Loughman AW, Jeewoody AB. Remote Doctors Radiation Licence Training and Manual: A review process towards enhanced professional development. Rural Remote Health 2008;8:865.   Back to cited text no. 6
[PUBMED]  [FULLTEXT]  
7.Uzuner N, Olmez D, Babayigit A, Vayvada O. Contact dermatitis with henna tattoo. Indian Pediatr 2009;46:423-4.  Back to cited text no. 7
[PUBMED]  [FULLTEXT]  
8.Brancaccio RR, Brown LH, Chang YT, Fogelman JP, Mafong EA, Cohen DE. Identification and quantification of para-phenylenediamine in a temporary black henna tattoo. Am J Contact Dermat 2002;13:15-8.  Back to cited text no. 8
[PUBMED]  [FULLTEXT]  
9.Strand H, Hoft R, Strittholt J, Horning N, Miles L, Fosnight E, et al. Radiation oncology source book. CIVCO Medical Solutions; 2007.  Back to cited text no. 9
    
10.Beer GM, Meyer VE, Burg D. Tattooing agents for nerve marking in experimental surgery. J Reconstr Microsurg 2001;17:435-8.  Back to cited text no. 10
[PUBMED]  [FULLTEXT]  
11.Available from: http://www.biotic.fr/en/pigment-range-permanent-makeup.html. [Last accessed on 2012 Jan 4].  Back to cited text no. 11
    
12.Tattooing method for radiotherapy; International publication WO2008/074052 A1. Available from: http://www.freepatentsonline.com/WO2008074052.html. [Last accessed on 2012 Jan 4].   Back to cited text no. 12
    
13.Walter J. Conditions responding to lasers. Vascular abnormalities and tattoos. Aust Fam Physician 1999;28:1033-4.  Back to cited text no. 13
[PUBMED]    
14.Sewak S, Graham P, Nankervis J. Tattoo allergy in patients receiving adjuvant radiotherapy for breast cancer. Australas Radiol 1999;43:558-61.  Back to cited text no. 14
[PUBMED]  [FULLTEXT]  



 
 
    Tables

  [Table 1], [Table 2]


This article has been cited by
1 Patient positioning in radiotherapy based on surface imaging using time of flight cameras
M. Gilles,H. Fayad,P. Miglierini,J. F. Clement,S. Scheib,L. Cozzi,J. Bert,N. Boussion,U. Schick,O. Pradier,D. Visvikis
Medical Physics. 2016; 43(8): 4833
[Pubmed] | [DOI]
2 Normative Values for Intertrial Variability of Motor Responses to Nerve Root and Transcranial Stimulation: A Condition for Follow-Up Studies in Individual Subjects
Walter Troni,Federica Melillo,Antonio Bertolotto,Simona Malucchi,Marco Capobianco,Francesca Sperli,Alessia Di Sapio,Antal Nógrádi
PLOS ONE. 2016; 11(5): e0155268
[Pubmed] | [DOI]
3 Quality improvement process to assess tattoo alignment, set-up accuracy and isocentre reproducibility in pelvic radiotherapy patients
Kelly Elsner,Kate Francis,George Hruby,Stephanie Roderick
Journal of Medical Radiation Sciences. 2014; : n/a
[Pubmed] | [DOI]



 

Top
 
 
  Search
 
Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
Access Statistics
Email Alert *
Add to My List *
* Registration required (free)

 
  In this article
Abstract
Introduction
Conclusion
References
Article Tables

 Article Access Statistics
    Viewed3288    
    Printed137    
    Emailed3    
    PDF Downloaded471    
    Comments [Add]    
    Cited by others 3    

Recommend this journal